肺表面活性物質(zhì)(pulmonary surfactant ,PS)由肺泡Ⅱ型細胞合成分泌的脂質(zhì)蛋白質(zhì)復(fù)合物。參與肺泡表面活性物質(zhì)的形成和代謝,維持磷脂單分子層的穩(wěn)定;阻止血漿蛋白進入肺泡腔;調(diào)節(jié)局部免疫和炎癥反應(yīng),在肺臟抗感染中起到重要作用。但使用外源性肺表面活性物質(zhì)治療ECC術(shù)后肺損傷目前仍處于臨床試驗階段。
NO是一種內(nèi)皮起源的自由基性質(zhì)的氣體,無論體內(nèi)生成或外源性NO的效應(yīng)和代謝主要在肺內(nèi)進行。NO能抑制白細胞對內(nèi)皮細胞的黏附,降低血管緊張性。ECC術(shù)中持續(xù)應(yīng)用40ppm的NO可明顯抑制術(shù)中PMN的呼吸爆發(fā)功能,減少PMN在外周組織的集聚,增加循環(huán)血中PMN計數(shù),達到減輕ECC術(shù)后肺損傷的目的。
前列腺素E1(PGE1)和I2(prostaglandin I2 ,PGI2)具有擴張血管、抑制白細胞和血小板聚集、細胞保護(穩(wěn)定細胞膜;清除自由基;增加局部血流)作用,改善紅細胞變形性及減少ECC全身炎性反應(yīng)等作用;可降低肺動脈壓,升高CI、PvO2,明顯改善右室功能,但PGI2也可致低血壓和出血。
溶栓劑(thrombolytics):組織纖溶酶無激活物和尿激酶;Almitrine是一種胡椒嗪衍生物,它可提高阻塞性肺疾病患者的PaO2 ,降低PaCO2;腺苷是一種內(nèi)源性血管擴張劑,可選擇性擴張肺血管,降低肺損傷的發(fā)生率。
4.6 麻醉藥的選擇 異丙酚(propofol)是自由基清除劑,具有類似維生素E的膜巰基保護作用?梢种芓NF-α、IL-8的合成,減少PMN在肺內(nèi)的浸潤及活化[17];增加SOD的活性;具有抗氧化作用,可抑制PMN呼吸爆發(fā),降低活性氧產(chǎn)量,抑制PMN的超化和吞噬作用。并可迅速蓄積在生物膜上,能增強抗氧化的組織防御,降低組織耗氧,抑制脂質(zhì)過氧化反應(yīng)。
尼卡地平是一種二羥吡啶類的鈣通道阻斷劑,具有抗缺血,防止細胞內(nèi)鈣超載以及抗氧自由基損傷的作用。其抗炎作用可能是繼發(fā)于其抗缺血作用。ECC前給予尼卡地平(0.02 mg/kg),可有效防止腔靜脈開放后5min PMN在肺內(nèi)的滯留,防止了由于缺血而導(dǎo)致的肺血管內(nèi)皮細胞表面黏附分子的表達以及抑制細胞內(nèi)黃嘌呤還原酶(XD)向黃嘌呤氧化酶(XOD)的轉(zhuǎn)化,達到預(yù)防ECC下肺I/R損傷所致的肺功能損害。
4.7 通氣方式的選擇 間斷肺通氣可通過減少白細胞與血管內(nèi)皮的黏附,減少肺部炎性反應(yīng)、內(nèi)皮細胞損傷等,對ECC所致的肺損傷有保護作用。使用PEEP和增大FiO2[18]。PEEP增加FRC、使血管外肺水再分布并改善肺順應(yīng)性。當PEEP從0.25kPa增至0.98kPa(10cmH2O)時,肺泡壓呈線性增高,當PEEP大于1.47kPa(15 cmH2O)時,肺泡壓增高而肺泡徑不再增大。PEEP并不使血管外肺水總量減少,而只是把肺水從肺泡向肺泡外間質(zhì)再分布。最小的PEEP是指在相對無毒性FiO2下,僅足以糾正危機生命的低氧血癥的PEEP水平。
近年研究提出了液體通氣。有部分液體通氣(PLV)和全液體通氣(TLV)兩種方式。部分液體通氣(partial liquid ventilation,PLV)以氟碳化合物(PFC)為媒介的,可明顯改善肺氣體交換,增加肺的順應(yīng)性,有效降低肺內(nèi)分流,升高PaO2,改善肺氧合。PFC是一種具有高氧和高二氧化碳溶解量的低張力、高密度的脂溶性液體,可減少肺損傷時中性粒細胞、巨噬細胞在肺內(nèi)的聚集,減少它們釋放的炎性細胞因子。
4.8 血液稀釋 可降低血液粘度,改善微循環(huán)的淤滯狀態(tài),沖走蓄積在肺組織內(nèi)的自由基和嵌塞在缺血局部毛細血管內(nèi)聚集的白細胞,兒茶酚胺及其它代謝產(chǎn)物,使血管內(nèi)皮細胞的微循環(huán)得以改善。缺血前稀釋血液不僅可使再灌注后肺血流量及局部代謝環(huán)境得以改善,也能改善缺血時的肺局部代謝環(huán)境,防止和緩解了再灌注后氧自由基等有害代謝物的大量產(chǎn)生,從而保護了肺功能。但注意,應(yīng)該嚴格掌握血液稀釋的程度,警惕過度稀釋引起肺水增多。
4.9 特異性拮抗炎性介質(zhì) 近來,隨著分子生物學(xué)的發(fā)展和應(yīng)用,利用抗細胞因子和內(nèi)毒素的單克隆抗體、補體系統(tǒng)抑制劑、特異的白細胞和內(nèi)皮細胞粘附分子的抗體等以減少 ECC 后的細胞因子、彈性蛋白酶和氧自由基等物質(zhì)的釋放,從而減輕細胞和組織的損傷,是一種新的具有誘惑力的治療方案。
綜上所述,ECC后肺損傷的嚴重程度及正確有效的處理與病人術(shù)后的恢復(fù)有密切的聯(lián)系。隨著材料科技的發(fā)展,實驗室和臨床上的動態(tài)研究,一定能探索出更加滿意的預(yù)防和治療措施。
【參考文獻】
[1] de Mendonca-Filho HT,Gomes RV,de Almeida Campos LA,et al. Circulating levels of macrophage migration inhibitory factor are associated with mild pulmonary dysfunction after cardiopulmonary bypass [J]. Shock, 2004, 22(6):533-537.
[2] Giomarelli P,Scolletta S,Borrelli E,et al. Myocardial and lung injury after cardiopulmonary bypass:role of interleukin(IL)-10 [J]. Ann Thorac Surg, 2003, 76(1):117-123.
[3] Rinder CS,Rinder HM, Smith MJ,et al. Antithrombin reduces monocyte and neutrophil CD11b up regulation in addition to blocking platelet activation during extracorporeal circulation [J]. Transfusion, 2006,46(7):1130-1137.
[4] Kovesi T,Szabo A,Royston D,et al. Correlation between pulmonary gas exchange and basal and nitroglycerin (GTN)-induced exhaled nitric oxide (eNO) in patients undergoing cardiac surgery [J]. Vascul Pharmacol ,2005,43(6):434-440.
[5] Schlensak C,Doenst T, Preusser S,et al. Cardiopulmonary bypass reduction of bronchial blood flow: a potential mechanism for lung injury in a neonatal pig model [J]. J Thorac Cardiovasc Surg, 2002,123(6):1199-1205.
[6] Suzuki T,Fukuda T,Ito T,et al. Continuous pulmonary perfusion during cardiopulmonary bypass prevents lung injury in infants [J]. Ann Thorac Surg, 2000, 69(2):602-606醫(yī).學(xué).全.在.線m.f1411.cn.
[7] Babik B, Asztalos T,Petak F,et al. Changes in respiratory mechanics during cardiac surgery[J]. Anesth Analg, 2003,96(5):1280-1287.
[8] Schultz JM,Karamlou T,Swanson J,et al. Hypothermic low-flow cardiopulmonary bypass impairs pulmonary and right ventricular function more than circulatory arrest [J]. Ann Thorac Surg, 2006,81(2):474-80.
[9] Sievers HH,Freund-Kaas C,Eleftheriadis S,et al. Lung protection during total cardiopulmonary bypass by isolated lung perfusion: preliminary results of a novel perfusion strategy [J]. Ann Thorac Surg, 2002,74(4):1167-1172.
[10] de Vroege R,van Oeveren W,van Klarenbosch J,et al. The impact of heparin-coated cardiopulmonary bypass circuits on pulmonary function and the release of inflammatory mediators [J]. Anesth Analg , 2004,98(6):1586-1594.
[11] Sheppard SV,Gibbs RV,Smith DC. Does leucocyte depletion during cardiopulmonary bypass improve oxygenation indices in patients with mild lung dysfunction [J]? Br J Anaesth, 2004,93(6):789-792.
[12] Olivencia-Yurvati AH,Ferrara CA,Tierney N,et al. Strategic leukocyte depletion reduces pulmonary microvascular pressure and improves pulmonary status postcardiopulmonary bypass [J]. Perfusion, 2003, 18: 23-31.
[13] Eren S,Esme H,Balci AE,et al. The effect of aprotinin on ischemia-reperfusion injury in an in situ normothermic ischemic lung model [J]. Eur J Cardiothorac Surg,2003,23(1):60-65.
[14] 李李,沈金美,何小京,等. 烏司他丁對體外循環(huán)患者血漿細胞因子水平及呼吸指數(shù)的影響 [J].中華麻醉學(xué)雜志,2004,24(8):578-581.
[15] Angdin M,Settergren G,Starkoopf J,et al. Protective effect of antioxidants on pulmonary endothelial function after cardiopulmonary bypass [J]. J Cardiothorac Vasc Anesth, 2003, 17(3):314-320.
[16] Schroeder VA,Pearl JM,Schwartz SM,et al. Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces postbypass inflammatory mediator expression [J]. Circulation, 2003, 107(22):2823-2828.
[17] 王立中, 李士通, 王瑩恬, 等. 不同干預(yù)措施對大鼠體外循環(huán)后急性肺損傷的影響 [J]. 中華麻醉學(xué)雜志, 2005, 25(8):579-583.
[18] Claxton BA,Morgan P, Mckeague H,et al. Alveolar recruitment strategy improves arterial oxygenation after cardiopulmonary bypass [J]. Anaesthesia, 2003, 58(2):111-116.